
Iain Lobb
C.E.O. Dull Dude Ltd!

 Designers do graphics and developers do code?
 But in games

 artists do graphics

 developers do code

 designers make it fun!

 So maybe we need a better definition.

 Developers solve technical problems

 Designers solve human problems.

 So we all do a bit of both.

2

 With experience and better tools, things move
from the development side to the design side.
Which makes the whole process more fun!
 var sound:Sound = new ShotgunSound();

 var transform:SoundTransform = new SoundTransform();

 transform.volume = 0.5;

 var channel:SoundChannel = sound.play(0, 1, transform);

 Vs.

 SoundManager.play(ShotgunSound, 0.5);

 Games are about the relationships between
objects in space.

 ... but videogames layer-on images,
characters, narratives, sound and music.

 Historically, most games are multiplayer
(chess, football etc).

 Videogames allow the computer to take on
the role of opponent.

 ... but multiplayer is still more fun!

 Collect objects
 Kill enemies
 Reach locations
 Match objects
 Solve puzzles
 Make friends (real or virtual)
 Pwn noobs
 Most games use a combination.

 Time limit
 Health
 Lives
 Ammo
 Money
 XP / Experience
 Inventory limit
 Doors & Keys
 Enemies, obstacles & puzzles

 Control a single avatar
 Command multiple agents
 Manipulate objects
 Match rhythms
 Create entities

 Flash sucks at input!
 Mouse
 Left button, context menu, wheel.

 sprite.mouseX and sprite.mouseY

 No wrapping or moving the cursor.
 Keyboard
 KeyboardEvent.KEY_DOWN and

KeyboardEvent.KEY_UP

 Limited simultaneous presses.

 CTRL, ALT and SHIFT are a no-go area!

 Here I come to save the day!
 http://github.com/iainlobb/Gamepad
 Based on analog joystick input.
 var gamepad:Gamepad = new Gamepad(stage, true);

 character.x += gamepad.x * 5;

 character.y += gamepad.y * 5;

 if (gamepad. fire1) { fire() };

 Use arrow keys, WASD or custom settings.
 Duplicate keys and fire rate coming soon.

http://github.com/iainlobb/Gamepad

 Coming soon...
 For games where you move or aim with the

mouse.
 Similar abilities to Gamepad.as, but for

mouse.

 True top-down
 Easy to rotate sprites.

 Good for driving games etc.
 Zelda-style
 Art is drawn with false perspective.

 Better for characters.

 ... but you have to draw every angle.
 Movement can be:
 compass-direction (for characters)

 or tank-style (for vehicles)

 Great for showing humanoid characters.
 Typically involves jumping around

implausible vertical spaces called “platforms”.
 Variable jumps.
 Double-jumps.
 In-air movement control.
 “Brawler” view like Final Fight or Castle

Crashers is somewhere between Top-down
and Side-on.

 Graphics are drawn from a fixed 45 degree
angle.

 Good for Sim games, puzzles and driving
games.

 Great for showing buildings – see eBoy.
 Confusing for player movement – which way

is left?

 Either using a 3D engine or pre-rendered
from a fixed perspective.

 Great for shooting, exploration and puzzle
games.

 There are other views

 Follow-cam (basically the same as first person)

 3rd person 3D camera (can track players)

 etc

 All games are 3D.
 A top down game where you can jump.

 A parallax background behind a platform game.

 So my new game engine is 100% 3D.

 ...but most aren’t.
 Gravity means we live on a 2D plane.

 We need a definite idea of up and down.

 2.5D works really well.

 3D is really hard, but the basics are easy:
 var scaleRatio:Number = focalLength / (focalLength + z3d);

 y = baseY + ((-z3d + y3d) * scaleRatio);

 x = baseX + ((z3d + x3d) * scaleRatio);

 scaleX = scaleY = scaleRatio;

 Luckily libraries are available to make your life easier.
 http://blog.papervision3d.org/

 http://away3d.com/
 3D art is more labour intensive to create, but is much

more flexible. Animation is harder still.
 If you’re serious, consider switching to Untiy3D.

http://blog.papervision3d.org/
http://away3d.com/

 Built in
 sprite.hitTestPoint()
 sprite.hitTestObject()
 bitmapData.hitTest()

 Pythagoras
 dx = sprite1.x – sprite2.x;
 dy = sprite1.y – sprite2.y;
 distance = Math.sqrt((dx*dx)+(dy*dy));

 Bounding box
 if (bottom1 < top2) return false;
 if (top1 > bottom2) return false;
 if (right1 < left2) return false;
 if (left1 > right2) return false;
 return(true);

 More advanced:
 Line-line

 Line-grid

 Line-circle

 Point-grid

 Circle-grid

 Point-polygon

 Polygon-polygon

 And many more!

 Gravity
 speedY += gravity; y += speedY;

 Bouncing
 speedY *= -0.9;

 Beyond that it gets really, really hard!
 Luckily there are libraries to help you
 http://box2dflash.sourceforge.net/

 http://code.google.com/p/glaze/

 http://lab.polygonal.de/motor_physics/

 http://www.jiglibflash.com/blog/

http://box2dflash.sourceforge.net/
http://code.google.com/p/glaze/
http://lab.polygonal.de/motor_physics/
http://www.jiglibflash.com/blog/

 Present since the earliest games.
 A neat simplification for games.
 var gridX:int = sprite.x / tileSize;

 var gridY:int = sprite.y / tileSize;

 var grid:Array = [[“air”, ”air”, “trap”, “platform”],
[“air”, “platform”, “air”, “air”]];

 if (grid[gridX][gridY] == “trap”) {killPlayer()};
 Helps with collision detection, path-finding,

level design.
 Powerful but restrictive.

 Working directly with image data rather than using
the standard display list.
 bitmapData.copyPixels()
 bitmapData.draw()
 Matrix transformations
 “buffers”
 graphics.beginBitmapFill()
 graphics.drawTriangles()

 Can be faster, but harder to do rotations etc
 Libraries
 http://flixel.org/
 http://flashpunk.net/

http://flixel.org/
http://flashpunk.net/

 Flash is very flexible and can handle a range of
styles.
 Hand-drawn

 Pixel-art

 Cell-shaded cartoon

 Painted

 3D rendered

 Photographic
 It normally doesn’t hurt to make your game look

like a game though.

 The best animation is done by hand.
 Hand-draw frames and position manually.
 Tweens are normally better off in code.

 object.x += (target.x – object.x) * 0.3;

 Tweening libraries save you many hours of
work.

 http://www.tweenmax.com/

http://www.tweenmax.com/

 Weapon strength, time limits, enemy speed
etc in easily modifiable variables or XML.

 Jump height needs to match level design.
 Particle effects, flashes, tints, screen shake
 What happens when you walk into a wall? Do

you slide, walk on the spot, flatten against it?
 Good usability on U.I. – pictorial not text.
 Freedom of movement, expressiveness,

“feel”, playability

 You need something which is unique to your
game.

 Hook, Unique Selling Point (USP), gimmick,
or twist.

 Character, weapon, unit type, mode of
interaction, game mechanic.

 Don’t just make a clone with different
graphics.

 If you’re going to copy something, work out
what about it you’re actually trying copy.

 Can turn a good game into a great game.
 Very clunky built-in support.
 Fade-in/out, pause, mute, loop, etc:
 http://evolve.reintroducing.com/2008/07/15/as3/as3-soundmanager/

 For sound effects try:

 http://www.soundrangers.com/

 http://www.drpetter.se/project_sfxr.html

 Audacity, Sony Acid Music, Garage Band etc
 Record your own!

http://evolve.reintroducing.com/2008/07/15/as3/as3-soundmanager/
http://evolve.reintroducing.com/2008/07/15/as3/as3-soundmanager/
http://evolve.reintroducing.com/2008/07/15/as3/as3-soundmanager/
http://www.soundrangers.com/
http://www.drpetter.se/project_sfxr.html

 Players don’t want to read instructions.
 Animation works better.
 Walk-throughs or tutorials are even better.
 Best of all is no instructions needed.
 Keep the controls on screen all the time.

 Really easy!

 sharedObject = SharedObject.getLocal(“game");

 sharedObject.data.score=9232;

 sharedObject.flush();

 Use “slots” to allow multiple saves.
 Progress can also be saved to a server.
 Or via level codes.

 Be pragmatic and come up with simple rules
that work.

 You’re not making chess computers here -
don’t code the perfect enemy.

 Enemies are generally slow and weaker than
your player – even their bullets move slower!

 A* path-finding etc is hard, but examples are
out there.

 Easy to do 2 players on one computer.
 Networked multiplayer adds a new level of fun

but greater complexity.
 Most solutions require you to have your own

server:
 http://www.electro-server.com/

 http://www.smartfoxserver.com/
 But not all!
 http://nonoba.com/

 http://playerio.com/

http://www.electro-server.com/
http://www.electro-server.com/
http://www.electro-server.com/
http://www.smartfoxserver.com/
http://nonoba.com/
http://playerio.com/

 Turn-based and “deterministic” games
require little or no server code.

 Real-time games require some Java,
JavaScript or C# code on the server.

 Server-code may also be needed to stop
cheating.

 Multiplayer games are less common but
command higher prices as they encourage
repeat plays.

 Sponsorship.

 Portals pay to add their branding to your game
and add links back to their site.

 Exclusive or non-exclusive licenses.

 “Site locks”

 Performance deals.

 £100 – £10,000 per game.

 http://www.flashgamelicense.com/

http://www.flashgamelicense.com/

 Advertising.

 In-game or in surrounding HTML

 Typically on preloader.

 Consider launching your own portal.

 £ low

 http://www.mochimedia.com/

 http://www.cpmstar.com/

 https://www.google.com/adsense/

http://www.mochimedia.com/
http://www.cpmstar.com/
https://www.google.com/adsense/
https://www.google.com/adsense/
https://www.google.com/adsense/

 Sales.

 Full game sales - typically download executable
version, sell via paypal etc (now iPhone, Android)

 Microtransations – users pay small amounts for
access to in-game items, characters and levels.

 £0.10-£10 per sale.

 http://www.jambool.com/

 https://www.mochimedia.com/developers/coins.h
tml

http://www.jambool.com/
https://www.mochimedia.com/developers/coins.html
https://www.mochimedia.com/developers/coins.html

 Client briefs.

 They pay you money and you make what they tell
you to.

 Steady income but less creative.

 No chance of getting rich.

 Can still be cool: e.g. Zwok!, Meta4orce.

 £1000-£100,000

http://blog.iainlobb.com

http://twitter.com/iainlobb

iainlobb@googlemail.com

http://blog.iainlobb.com/
http://twitter.com/iainlobb
mailto:iainlobb@googlemail.com

